Home
Class 11
MATHS
int(dx)/(sqrtx+x^(1/3)) can be evaluated...

`int(dx)/(sqrtx+x^(1/3))` can be evaluated by the substitution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)+x^((1)/(3))) can be evaluated by the sqrt(x)+x^((1)/(3)) substitution

int x^(2) root(3)(x^(3)-5) dx can be easily evaluated by the substitution-

Statement-I: Integral of the form int (x^(2)+1)/(x^(4)+1)dx can be evaluated by substituting x-(1)/(x)=z . Statement II: Integral of the form int (x^(2)-1)/(x^(4)+1)dx can be evaluated by substituting x+(1)/(x)=z .

int (1-x) sqrtx dx

int (1+x)^3/sqrtx dx

int (dx)/(2sqrtx(1+x)) dx =

int(1)/(sqrtx+x)dx=

int(1)/(x+sqrtx)dx=

int(1)/(sqrtx(x+9))dx=