Home
Class 12
MATHS
The largest interval lying in (-pi/2,pi/...

The largest interval lying in `(-pi/2,pi/2)` for which the function `[f(x)=4^-x^2+cos^(-1)(x/2-1)+log(cosx)]` is defined, is (1) `[0,pi]` (2) `(-pi/2,pi/2)` (3) `[-pi/4,pi/2)` (4) `[0,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest interval lying in (-pi/2, pi/2) for which the function f(x) =4^(-x^(2)) + cos^(-1)(x/2-1) + log(cos x) is defined, is

The largest Interval lying in (-pi/2,pi/2) for which the function : f(x)= [4^(-x^(2))+ cos^(-1) (x/2-1)+ log( cos x)] is defined is :

The largest interval lying in [(-pi)/(2),(pi)/(2)] for which the function f(x)= [4^(-x^(2)+cos^(-1)((x)/(2)-1)+log(cos x)] is defined is :

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)