Home
Class 12
MATHS
If z^7+1 =0 then cos(pi/7) cos((3pi)/7) ...

If `z^7+1 =0` then `cos(pi/7) cos((3pi)/7) cos((5pi)/7)` is (A) `1/8` (B) `-1/8` (C) `1/(2sqrt2)` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that cos(pi/7)cos((2pi)/7)cos((3pi)/7)=1/8

If z^(7)+1=0 then cos((pi)/(7))cos((3 pi)/(7))cos((5 pi)/(7)) is (A)(1)/(8) (B) -(1)/(8)(C)(1)/(2sqrt(2))(D)(1)/(2)

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that cos((2pi)/7) cos((4pi)/7) cos((8pi)/7) =1/8

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that cos((2pi)/7)cos((4pi)/7)cos((8pi)/7)=1/8

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Show that cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)=-1/2