Home
Class 11
MATHS
The tangent at a point P on the hyperbol...

The tangent at a point `P` on the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` meets one of the directrix at `Fdot` If `P F` subtends an angle `theta` at the corresponding focus, then `theta=` `pi/4` (b) `pi/2` (c) `(3pi)/4` (d) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 meets one of the directrix at Fdot If P F subtends an angle theta at the corresponding focus, then theta= (a) pi/4 (b) pi/2 (c) (3pi)/4 (d) pi

The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets one of the directrix at F. If PF subtends an angle theta at the corresponding focus,then theta=(pi)/(4) (b) (pi)/(2)(c)(3 pi)/(4) (d) pi

The equation of the tangents to the hyperbola (x^(2))/( 9) -( y^(2))/( 4) = 1 at the point theta =(pi)/(3) is

If tan^(-1)(cottheta)=2\ theta , then theta= (a) +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

If tan^(-1)(cottheta)=2\ theta , then theta= +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

The period of cos5 theta is (a) pi^(2) (b) 2 pi (c) 2 pi/5 (d) pi/3

P and Q are points on the ellipse x^2/a^2+y^2/b^2 =1 whose center is C . The eccentric angles of P and Q differ by a right angle. If /_PCQ minimum, the eccentric angle of P can be (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/12

P and Q are points on the ellipse x^2/a^2+y^2/b^2 =1 whose center is C. The eccentric angles of P and Q differ by a right angle. If /_PCQ minimum, the eccentric angle of P can be (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/12

P and Q are points on the ellipse x^2/a^2+y^2/b^2 =1 whose center is C . The eccentric angles of P and Q differ by a right angle. If /_PCQ minimum, the eccentric angle of P can be (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/12