Home
Class 12
MATHS
int{(1)/((logx))-(1)/((logx)^(2))}dx=?...

`int{(1)/((logx))-(1)/((logx)^(2))}dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

int (logx-1)/((logx)^(2)) dx =

int(logx)/((1+ logx)^(2))dx=

int(1)/(x(logx))dx=

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

int[log(logx)+(1)/((logx)^(2))]dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

Prove that, int_(2)^(e)[(1)/(logx)-(1)/((logx)^(2))]dx=e-(2)/(log2)