Home
Class 12
MATHS
" If "cos^(-1)x+cos^(-1)y+cos^(-1)z=pi" ...

" If "cos^(-1)x+cos^(-1)y+cos^(-1)z=pi" prove that,"x^(2)+y^(2)+z^(2)=2xy

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi then

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^(2) +y^(2) +z^(2) + 2xyz = 1 (ii) If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi/2 , prove that : x^(2) +y^(2) +z^(2) +2xyz = 1