Home
Class 14
MATHS
(a-2b)^(12)" is "a^(5)b^(7)bar(cm)...

(a-2b)^(12)" is "a^(5)b^(7)bar(cm)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

if |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

If (bar(a)+bar(b))*(bar(a)+bar(b))=|bar(a)|^(2)+|bar(b)|^(2),bar(a)!=0,bar(b)!=0 , then

Show that the following vectors are linearly dependent bar(a)-2bar(b)+bar(c), 2bar(a)+bar(b)-bar(c), 7bar(a)-4bar(b)+bar(c) where bar(a), bar(b), bar(c) are non-coplanar vectors

If bar(a)=2bar(i)-bar(j)+3bar(k), bar(b)=-bar(i)+4bar(j)-2bar(k), bar(c)=5bar(i)+bar(j)+7bar(k) and xbar(a)+ybar(b)=bar(c) then (x, y) =

If volume of parallelopiped determined by bar(a),bar(b),bar(c) is 5, then the volume of parallelopiped determined by 2bar(a)+bar(b)+2bar(c),bar(a)-bar(b)-2bar(c),3bar(a)+bar(b)-6bar(c)