Home
Class 12
MATHS
Let z1=e^((ipi)/5)...

Let `z_1=e^((ipi)/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numbers such that a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z .Then, the value of (|x|^2+|y|^2|+|z|^2)/(|a|^2+|b|^2+|c|^2)

Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numbers such that a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z .Then, the value of (|x|^2+|y|^2|+|y|^2)/(|a|^2+|b|^2+|c|^2)

Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numbers such that a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z .Then, the value of (|x|^2+|y|^2|+|y|^2)/(|a|^2+|b|^2+|c|^2)

Let omega =e^(ipi/3) and a,b,c,x,y,z be nonzero complex number such that a+b+c=x, a+bomega+comega^2=y, a+bomega^2+comega=z . Then the value of (|x|^2+|y|^2+|z|^2)/(|a|^2+|b|^2+|c|^2) is

Let omega=e^(ipi/3) ,and a,b,c,x,y,z be non zero complex numbers such that a+b+c=x a+bomega+comega^2=y a+bomega^2+comega=z then the value of (absx^2+absy^2+absz^2)/(absa^2+absb^2+absc^2) is

Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1 , then S = z^(2015) + z^(2016) + z^(2017) + ... equals

If P,Q and R are points respectively representing the complex numbers z , ze^(ipi/3) and z(1+e^(ipi/3)) in agrand plane then area of the triangle PQR is

If S = [{:( 1,1,1),( 1,a^(2) ,a),( 1,a,a^(2)):}] where a=e^(2ipi//3) , find absS