Home
Class 12
MATHS
" The value of "int(-2)^(1)([x]+|x-3|)dx...

" The value of "int_(-2)^(1)([x]+|x-3|)dx," is (where [.] denotes greatest integer function) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(15)[x]^(3)dx equals, where [. ] denote the greatest integer function

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

The value of int_(0)^(100)[tan^(-1)x]dx is,(where [^(*)] denotes greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to