Home
Class 12
MATHS
Let D ,Ea n dF be the middle points of t...

Let `D ,Ea n dF` be the middle points of the sides `B C ,C Aa n dA B ,` respectively of a triangle `A B Cdot` Then prove that ` vec A D+ vec B E+ vec C F= vec0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If D ,\ E ,\ F are the mid points of the side B C ,\ C A and A B respectively of a triangle ABC, write the value of vec A D+ vec B E+ vec C Fdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot