Home
Class 12
MATHS
For any positive integer n , define fn...

For any positive integer `n` , define `f_n :(0,oo)rarrR` as `f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1)))` for all `x in (0, oo)` . Here, the inverse trigonometric function `tan^(-1)x` assumes values in `(-pi/2,pi/2)dot` Then, which of the following statement(s) is (are) TRUE? `sum_(j=1)^5tan^2(f_j(0))=55` (b) `sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10` (c) For any fixed positive integer `n` , `(lim)_(xrarroo)tan(f_n(x))=1/n` (d) For any fixed positive integer `n` , `(lim)_(xrarroo)sec^2(f_n(x))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer n . let S_n:(0,oo) to R be defined by S_n(x)=sum_(k=1)^n Cot^-1((1+k(k+1)x^2)/x) where for any x in R , cot^-1x in (0,pi) and tan^-1(x) in (-pi/2, pi/2) .Then which of the following statement is(are TRUE ?

If f(x)=(a-x^(n))^(1/n),agt0 and n is a positive integer, then prove that f(f(x)) = x.

If f(x)=(a-x^(n))^(1//n) , where a gt 0 and n is a positive integer, then f[f(x)]=

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?