Home
Class 11
MATHS
Show that a real value of x\ will satis...

Show that a real value of `x\ ` will satisfy the equation `(1-ix)/(1+ix)=a-i b\ if\ a^2+b^2=1` , when `a\ , b` are real.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ib if a^(2)+b^(2)=1, wherea,breal.

Show that a real value of x will satisfy the equation (1-i x)//(1+i x)=a-i b if a^2+b^2=1 ,where a ,b real.

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)= a -ib if a^2+b^2=1 , where a, b are real.

Show that a real value of x will satisfy the equation (1-i x)//(1+i x)=a-i b if a^2+b^2=1,w h e r ea ,b real.

Show that a real value of x will satisfy the equation (1-i x)//(1+i x)=a+i b if a^2+b^2=1,w h e r ea ,b real.

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ibquad if a^(2)+b^(2)=1 ,when a,b are real.

Show that a real value of 'x' will satisfy the equation (1- ix )/(1+i x)=a-i b , where a^(2)+b^(2)=1 , a, b are real.

A real value of x satisfies the equation (3-4i x)/(3+4i x)=a-i b(a ,\ b in RR),\ if\ a^2+b^2= a. 1 b. -1 c. 2 d. -2

if (1-ix)/(1+ix)=a-ib ,then prove that a^2+b^2=1 (a,b x are real).

A real value of x satisfies the equation (3-4i x)/(3+4i x)=a-i b(a , b in RR), if a^2+b^2= a. 1 b. -1 c. 2 d. -2