Home
Class 11
MATHS
sqrt[x^2+x+4]+sqrt[x^2+x+1]=sqrt[2x^2+2x...

`sqrt[x^2+x+4]+sqrt[x^2+x+1]=sqrt[2x^2+2x+4]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = sqrt(x + 2sqrt(2x - 4)) + sqrt(x - 2sqrt(2x - 4)) , then f'(3) = f'(6) =

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Evaluate (x^2 - sqrt(1 - x^2) )^4 + (x^2 + sqrt( 1- x^2) )^4

lim_(x rarr 2) (sqrt(x-2) + sqrt(x) - sqrt(2))/(sqrt(x^(2) - 4)) is equal to :

For x gt 2, then equation sqrt(x + 2) - sqrt(x - 2) = sqrt(4x - 2) has

x^2+sqrt2x-4=0 ; x=sqrt3,x=-2sqrt2

If f(x)=(1)/(sqrt(x+2 sqrt(2 x-4)))+(1)/(sqrt(x-2 sqrt(2 x-4))) , for x gt 2 , then f(11)=