Home
Class 11
MATHS
For any triangle ABC, prove that sin(B-...

For any triangle ABC, prove that `sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that : (sin(B-C))/(sin(B+C))= (b^2 -c^2)/a^2 .

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: ("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0