Home
Class 12
MATHS
lim(x->0^(+)) [sinx/x]=...

`lim_(x->0^(+)) [sinx/x]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Write the value of (lim)_(x->0)(sinx^0)/x

lim_(x->0)|sinx|/x

Evaluate the limits, if exist (lim)_(x->0)(e^(sinx)-1)/x

Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x

Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x

Find the value of lim_(x->0)(1/sinx-1/x)

Find the value of lim_(x->0)(1/sinx-1/x)