Home
Class 12
MATHS
If int[sinx]^2/[1+[sinx]^2].dx =x-ktan^-...

If `int[sinx]^2/[1+[sinx]^2].dx` =`x-ktan^-1(M tanx)` then: a. `M=1/sqrt2` b. `k=1/sqrt2` c. `M=-1/sqrt2` d. `k=-1/sqrt2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int[sin^2x]/[1+sin^2x] dx = x-ktan^-1(M tanx) then: a. M=1/sqrt2 b. k=1/sqrt2 c. M=-1/sqrt2 d. k=-1/sqrt2

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

int(sinx-cosx)/(sqrt(sin2x-(1)/(2)))dx=

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

Prove that int(dx)/(2+sinx)=2/sqrt(3)tan^-1((2tanx//2+1)/sqrt3)+c.