Home
Class 12
MATHS
Number of points of non-differentiabilit...

Number of points of non-differentiability of the function `g(x) = [x^2]{cos^2 4x} + {x^2}[cos^2 4x] +x^2 sin^2 4x + [x^2][cos^2 4x] + {x^2}{cos^2 4x}` in `(-50, 50)` where `[x] and {x}` denotes the greatest integer function and fractional part function of x respectively, is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of points of non-differentiability of the function g(x)=[x^(2)]{cos^(2)4x}+{x^(2)}[cos^(2)4x]+x^(2)sin^(2)4x+[x^(2)][cos^(2)4x]+{x^(2)}{cos^(2)4xin(-50,50) where [x] and {x} denotes the greatest integer function and fractional part function of xespectively,is equal to:

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Number of solution of equation [x]^2=x+2{x} is/are , where [.] and {.} denote the greatest integer and the fractional part functions, respectively

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then