Home
Class 9
MATHS
1:(a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)...

1:(a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

Factorise : a^(3) + 3a^(2)b + 3ab^(2) + 2b^(3) .

Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))