Home
Class 12
MATHS
Consider f(x) = |1-x |, 1<x<2 and g(x) =...

Consider f(x) = |1-x |, 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f(x)=|1-x|,1 le xle2 and g(x)=f(x)+b sin.(pi)/(2)x, 1 le xle 2 then which of the following is correct?

Consider f(x)=|1-x|,1 le xle2 and g(x)=f(x)+b sin.(pi)/(2)x, 1 le xle 2 then which of the following is correct?

Consider f(x)=|1-x| 1 lt=xlt=2 a n d g(x)=f(x)+bsinpi/2 x , 1 lt=xlt=2 Then which of the following is correct? Rolles theorem is applicable to both f, g a n d b = 3//2 LMVT is not applicable of f and Rolles theorem if applicable to g with b=1/2 LMVT is applicable to f and Rolles theorem is applicable to g with b = 1 Rolles theorem is not applicable to both f,g for any real b .

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

Consider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such that f(x)ge0 then D is equal to

Consider f(x)=int_1^x(t+1/t)dt and g(x)=f'(x) If P is a point on the curve y=g(x) such that the tangent to this curve at P is parallel to the chord joining the point (1/2,g(1/2)) and (3,g(3)) of the curve then the coordinates of the point P

Consider f(x)=int_1^x(t+1/t)dt and g(x)=f'(x) If P is a point on the curve y=g(x) such that the tangent to this curve at P is parallel to the chord joining the point (1/2,g(1/2)) and (3,g(3)) of the curve then the coordinates of the point P

Consider f(x)=sin −1 (sec(tan −1 x)+cos −1 (cosec(cot −1 x) Statement-1: Domain of f(x) is a singleton. Statement-2: Range of the function f(x) is a singleton.