Home
Class 12
MATHS
[" If "|z-2-i|=|z|sin((pi)/(4)-arg z)," ...

[" If "|z-2-i|=|z|sin((pi)/(4)-arg z)," then the "],[" locus of "z" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

In argand plane |z| represent the distance of a point z from the origin. In general |z_(1)-z_(2)| represent the distance between two points z_(1) and z_(2) . Also for a general moving point z in argand plane, if arg(z)=theta , then z=|z|e^(i theta) , where e^(i theta)=cos theta+i sin theta . If |z-(3+2i)|=|z cos((pi)/(4)-"arg z")| , then locus of z is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If z_(1) = 8 + 4i , z_(2) = 6 + 4i and z be a complex number such that Arg ((z - z_(1))/(z - z_(2))) = (pi)/(4) , then the locus of z is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is