Home
Class 9
MATHS
If cot^(4)x-cot^(2)x=1, then the value o...

If `cot^(4)x-cot^(2)x=1`, then the value of `cos^(4)x+cos^(2)x` is ________

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(4)x + sin^(2) x =1 , then the value of cot^(4)x + cot^(2)x is:

If cot^(-1)((4)/(3))=x then find the value of cos2x

If cot^(-1)((4)/(3))=x then find the value of cos2x

If cot(x/2)-cos ec(x/2)=cot x , then the values of x are

If cosec x-cot x=(1)/(3), where x!=0, then the value of cos^(2)x-sin^(2)x is

If sin x+sin^(2)x=1 then the value of cos^(2)+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1 then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If cos(cot^(-1)(1/2))=cot(cos^(-1)x) , then a value of x is

If cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x) , then a value of x is