Home
Class 11
MATHS
[" (xi) "sin^(-1)x+sin^(-1)y=cos^(-1)(sq...

[" (xi) "sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy)],[(1)/(root(3)(6)])x in[0,1],y in[0,1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]