Home
Class 11
MATHS
In a triangle A B C , if cos A=(sinB)/(2...

In a triangle `A B C` , if `cos A=(sinB)/(2sinC)` , show that the triangle is isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if cos A=(sin B)/(2sin C), show that the triangle is isosceles.

If A, B, C are the angles of a triangle ABC and if cosA=(sinB)/(2sinC) , show that the triangle is isosceles.

If 2 cos A = (sin B)/(sin C) then show that the triangle is isosceles.

If cosB = (sinA)/(2sinC) prove that the triangle is isosceles.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

In a Delta ABC, if cos C = (sin A)/(2 sin B) , show that the triangle is isosceles.

If 2cosA=sinB/sinC then show that the triangle is an isosceles triangle