Home
Class 11
MATHS
[" 57."cos^(2)48^(@)-sin^(2)12^(@)=],[["...

[" 57."cos^(2)48^(@)-sin^(2)12^(@)=],[[" (a) "(sqrt(5)-1)/(4)," (b) "(sqrt(5))/(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(2)48^(0)-sin^(2)12^(0) is

cos ^(2) 48^(@) - sin ^(2) 12 ^(@) = (sqrt5+1)/(8).

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

cos^(2)48^(@)-sin^(2)12^(0) is equal to

Prove that cos^(2)48^(@)-sin^(2)12^(@)=((sqrt5+1))/(8) .

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

The value of cos^(2)48^(@)-sin^(2)12^(@) is