Home
Class 12
MATHS
(dy)/(dx)=y=(cos'1-x^(2))/(1+x^(2))...

(dy)/(dx)=y=(cos'1-x^(2))/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(1+x^(2))/(y+cos y)

x(dy)/(dx)=y-cos((1)/(x))

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

(dy)/(dx)=(y^(2)+y+1)/(x^(2)+x+1)

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

Find (dy)/(dx) , when y = cos((1-x^(2))/(1+x^(2)))

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

y(1+x^(2))dy=x(1+y^(2))dx

(x + y (dy) / (dx)) / (yx (dy) / (dx)) = (x cos ^ (2) (x ^ (2) + y ^ (2))) / (y ^ ( 3))

If y=(sin^(-1)x)/(cos^(-1)x)," then "(dy)/(dx)=(k)/((cos^(-1)x)^(2)sqrt(1-x^(2)))," where "k=