Home
Class 14
MATHS
" 54."4f(4)a+b+c=0" at,"root(7)(((a^(2))...

" 54."4f_(4)a+b+c=0" at,"root(7)(((a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

Ifa+b+c=0, findthevalue ((b+c)^(2))/(bc)+((c+a)^(2))/(ca)+((a+b)^(2))/(ab)

If a+b+c =0 Prove that root(bc)(x^(a^(2))/x^(bc))xxroot(ca)(x^(b^(2))/x^(ca))xxroot(ab)(x^(c^(2))/x^(ab))=1

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

If a+b+c=0, find the value of (a^(2))/((a^(2)-bc))+(b^(2))/((b^(2)-ca))+(c^(2))/((c^(2)-ab))*( a) 0 (b) 1(c)2(d)4

If a+b+c=0, then the value of ((a+b)^(2))/(ab)+((b+c)^(2))/(bc)+((c+a)^(2))/(ca) is

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3