निम्नलिखित वृत्त का केन्द्र तथा त्रिज्या ज्ञात कीजिए : `x^(2)+y^(2)-6x+5y-8=0.`
लिखित उत्तर
Verified by Experts
वृत्त का समीकरण `x^(2)+y^(2)-6x+5y-8=0` `g=(1)/(2)(x" का गुणांक")=(1)/(2)xx(-6)=-3` `f=(1)/(2)(y" का गुणांक")=(1)/(2)xx5=(5)/(2)` तथा `c=-8` अत: वृत्त का केन्द्र `(-g,-g)=(3,-(5)/(2))` तथा `" ""त्रिज्या"=sqrt(g^(2)+f^(2)-c)=sqrt((-3)^(2)+((5)/(2))^(2)+8)` `=sqrt(9+(25)/(4)+8)=(sqrt(93))/(2)` अत: वृत्त का केन्द्र `(3,-(5)/(2))` तथा त्रिज्या `=(sqrt(93))/(2).`
टॉपर्स ने हल किए ये सवाल
शंकु परिच्छेद
MANOHAR RAY|Exercise प्रश्नावली 11(A)|16 Videos
शंकु परिच्छेद
MANOHAR RAY|Exercise प्रश्नावली 11(B)|16 Videos
रैखिक असमिकाएँ
MANOHAR RAY|Exercise प्रश्नावली 6(D)|19 Videos
समुच्चय
MANOHAR RAY|Exercise प्रश्नावली 1(G)|23 Videos
MANOHAR RAY-शंकु परिच्छेद -इंजीनियरिंग परीक्षाओं के प्रश्न