उस वृत्त का समीकरण ज्ञात कीजिए, जिसका केन्द्र (1, -3) है और जो रेखा `2x-y-4=0` को स्पर्श करता है।
लिखित उत्तर
Verified by Experts
वृत्त के केन्द्र (1, -3) से स्पर्शी रेखा `2x-y-4=0` पर लम्ब की लम्बाई वृत्त की त्रिज्या के बराबर होगी। अत: वृत्त की त्रिज्या `=(2xx1-(-3)-4)/(sqrt(2^(2)+(-1)^(2)))=(2+3-4)/(sqrt(4+1))` `=(1)/(sqrt(5))` अत: वृत्त का समीकरण है, `(x-1)^(2)+(y+3)^(2)=(1)/(5)` या `" "5x^(2)-10x+5+5y^(2)+30y+45=1` या `" "5x^(2)+5y^(2)-10x+30y+49=0.`
टॉपर्स ने हल किए ये सवाल
शंकु परिच्छेद
MANOHAR RAY|Exercise प्रश्नावली 11(A)|16 Videos
शंकु परिच्छेद
MANOHAR RAY|Exercise प्रश्नावली 11(B)|16 Videos
रैखिक असमिकाएँ
MANOHAR RAY|Exercise प्रश्नावली 6(D)|19 Videos
समुच्चय
MANOHAR RAY|Exercise प्रश्नावली 1(G)|23 Videos
MANOHAR RAY-शंकु परिच्छेद -इंजीनियरिंग परीक्षाओं के प्रश्न