Home
Class 12
MATHS
int(tan x)/(1+tan x+tan^(2)x)dx=x-(K)/(s...

int(tan x)/(1+tan x+tan^(2)x)dx=x-(K)/(sqrt(A))tan^(-1)((K tan x+1)/(sqrt(A)))+C

Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(sqrt(A)))+C, then the ordered pir of (K,A) is equal to : (A) (2,1)(B)(-2,3)(C)(2,3)(D)(-2,1)

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

int(1)/(1+cos^(2)x)dx=(1)/(sqrt(2))tan^(-1)((tan x)/(sqrt(2)))+c

int ("tan"x)/(1 + tan x )dx

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int (1- tan x//2)/(1+ tan x//2)dx=