Home
Class 12
MATHS
Prove that int0^(pi/2)(dx)/((1-2x^2)sqrt...

Prove that `int_0^(pi/2)(dx)/((1-2x^2)sqrt(1-x^2))=1/2log(2+sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

Show that int_(0)^(1//2) (dx)/((1-2x^(2))sqrt(1-x^(2))) = (1)/(2) log(2+sqrt(3))

Show that int_(0)^(1//3)(dx)/((1+x^(2))sqrt(1-x^(2))) = (pi)/(4sqrt(2))

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)

Prove that, int_(2)^(3)(dx)/((x-1)sqrt(x^(2)-2x))=(pi)/(3)

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Prove that :int_(0)^((pi)/(2))sqrt(1-sin2x)dx=2(sqrt(2)-1)

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Show that int_(0)^(1//2)(x sin^(-1)x)/(sqrt(1-x^(2)))dx = (1)/(2)-(sqrt(3))/(12)pi