Home
Class 12
MATHS
If a1lt(28)^(1//3)-3ltb1, then (a1, b1) ...

If `a_1lt(28)^(1//3)-3ltb_1,` then `(a_1, b_1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1) lt ( 28)^((1)/( 3)) - 3 lt b_(1) , then (a_(1) b_(1)) ( a_(1) , b_(1)) is

Prove that 1/28 lt (28) ^(1//3)-3lt 1/27

If the points (a,b),(a_1,b_10 and (a-a_1,b-b_1) are collinear, show that a/a_1=b/b_1

If tangent at point P(a,b) to the curve x^3+y^3=c^3 meet the curve agins at Q(a_1, b_1) then (a_1)/a +b_1/b=

If the points (a, b), (a_1, b_1) and (a-a_1 , b-b) are collinear, show that a/a_1 = b/b_1

Prove that the points (a ,\ b),\ (a_1,\ b_1) and (a-a_1,\ b-b_1) are collinear if a b_1=a_1b .

If |((a_1 - a)^2,(a_1 - b)^2,(a_1 - c)^2),((b_1 - a)^2,(b_1 - b)^2,(b_1 - c)^2),((c_1 - a)^2,(c_1-b)^2,(c_1-c)^2)|=0 and if the vectors vec alpha = (1, a, a^2), vec beta = (1,b,b^2),vec gamma=(1,c,c^2) are non coplanar, show that the vectors vec alpha_1 =(1,a,a_1^2) ,vec beta_1=(1,b_1,b_1^2),vec gamma_1=(1,c_1,c_1^2) are coplanar.

If P(A_1) = 0.3 , then P(A_1^C) = ?

If (b_2-b_1)(b_3-b_1)+(a_2-a_1)(a_3-a_1)=0 , then prove that the circumcenter of the triangle having vertices (a_1,b_1),(a_2,b_2) and (a_3,b_3) is ((a_2+a_3)/2,(b_(2+)b_3)/2)