Home
Class 12
MATHS
[2sin^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))" ...

[2sin^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))" is true when "],[[" (A)."x in R],[" (B)."|x|<=1],[" (C)."|x|<=1/sqrt(2)],[" (D) "0<=x<=1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=