Home
Class 12
MATHS
If f(x)=int(1)^(x)(logt)(1+t+t^(2))dt AA...

If `f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1`, then prove that `f(x)=f(1/x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=int_1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2))dt,AAxge1 then f(x) a) f(1/x) b) f((1)/(x^(2))) c) f(x^(2)) d) -f(1/x)

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)