Home
Class 12
MATHS
" If "y=tan^(-1)(log((e)/(x^(2))))/(log(...

" If "y=tan^(-1)(log((e)/(x^(2))))/(log(ex^(2)))+tan^(-1)(3+2log x)/(1-6log x)," then "(d^(2)y)/(dx^(2))is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

If quad y=tan^(-1){(log_(e)((e)/(x^(2))))/(log_(e)(ex^(2)))}+tan^(-1)((3+2log_(e)x)/(1-6log_(e)x)), then (d^(2)y)/(dx^(2))=

If y=tan^-1((log(e/x^2))/(log(ex^2)))+tan^-1((3+2logx)/(1-6logx)), then (d^2y)/(dx^2) is (a) 2 (b) 1 (c) 0 (d) -1

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

If y=tan^(-1){((log)_(e)(e/x^(2)))/((log_(e)(ex^(2)))}+tan^(-1)((3+2(log)_(e)x)/(1-6(log)_(e)x)), then (d^(2)y)/(dx^(2))=(a)2(b)1(c)0(d)-1

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

(d)/(dx)[(tan^(-1)(log((e)/(x^(2)))))/(log(ex^(2)))]=