Home
Class 12
MATHS
[" If "lim(x rarr a)f(x)=lim(x rarr a)[f...

[" If "lim_(x rarr a)f(x)=lim_(x rarr a)[f(x)][(*]" denotes the greater integer function) and "f(x)" is non-constant confinutitivation the mealues of a "],[" then "],[[" (a) "lim_(x rarr a)f(x)" is irrational "," (b) "lim_(x rarr a)f(x)" is non-integer "],[" (c) "f(x)" has local maxima at "x=a," (d) "f(x)" has local minima at "x=a]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr a)f(x)=lim_(x rarr a)[f(x)]([.] denotes the greatest integer function) and f(x) is non- constantcontinuous function,then:

If lim_(xrarra) f(x)=lim_(xrarra) [f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If lim_(xrarra) f(x)=lim_(xrarra) [f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

lim_(x rarr0)(x[x])/(sin|x|) , where [.] denote greater integer function

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is