Home
Class 12
MATHS
It is given that : vec x = (vec b xx vec...

It is given that : `vec x = (vec b xx vec c)/([veca vec b vec c]) ; vecy=(vec c vec a)/([veca vecb vecc]) ; vecz=(veca xx vecb)/([veca vecb vecc])` where a, b, c are non-coplanar vectors; show that x, y, z also form a non-coplanar system. Find the value of `vecx*(veca+vecb)+vecy*(vecb+vecc)+vecz(vecc+veca)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If the vectors vec a, b, c are coplanar, then the value of |(veca, vecb, vecc), (veca.a, veca.b, veca.c), (vecb.a, vecb.b, vecb.c)|

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=