Home
Class 11
MATHS
[" The harmonic mean of two numbers is "...

[" The harmonic mean of two numbers is "4," and their arithmetic mean "A," and geome "],[" mean G satisfy the relation "2A+G^(2)=27." Find the two numbers."]

Promotional Banner

Similar Questions

Explore conceptually related problems

The harmonic mean of two numbers is 4, their arithmetic mean 'A' and the geometric mean G satisfy the relation 2A + G^(2) = 27 . Find the numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^(2)=27. Find two numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^2=27. Find two numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^2=27. Find two numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^2=27. Find two numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^2=27. Find two numbers.

The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation 2A+G^2=27 . Find the numbers