Home
Class 11
MATHS
The general solution of the equation 8co...

The general solution of the equation `8cosxcos2xcos4x=(sin6x)/(sin x)` is `x=((npi)/7)+(pi/(21)),AAn in Z` `x=((2pi)/7)+(pi/(14)),AAn in Z` `x=((npi)/7)+(pi/(14)),AAn in Z` `x=(npi)+(pi/(14)),AAn in Z`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation 8cos x cos2x cos4x=(sin6x)/(sin x) is x=((n pi)/(7))+((pi)/(21)),AA n in Zx=((2 pi)/(7))+((pi)/(14)),AA n in Zx=((n pi)/(7))+((pi)/(14)),AA n in Zx=(n pi)+((pi)/(14)),AA n in Z

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

The solutions of the equation 1+(sinx-cosx)sinpi/4=2cos^2(5x)/2 is/are x=(npi)/3+pi/8, n in Z x=(npi)/2+(5pi)/(16), n in Z x=(npi)/3+pi/4, n in Z x=(npi)/2+(7pi)/8, n in Z

The general solution of the equation sinx-3sin2x+sin3x=cosx-3cos2x+cos3x is (n in Z) npi+pi/8 (b) (npi)/2+pi/8 (-1)^n(npi)/2+pi/8 (d) 2npi+cos^(-1)2/3

The general solution of the equation sinx-3sin2x+sin3x=cosx-3cos2x+cos3x is (n in Z) npi+pi/8 (b) (npi)/2+pi/8 (-1)^n(npi)/2+pi/8 (d) 2npi+cos^(-1)2/3

The general solution of the equation sinx-3sin2x+sin3x=cosx-3cos2x+cos3x is (n in Z) npi+pi/8 (b) (npi)/2+pi/8 (-1)^n(npi)/2+pi/8 (d) 2npi+cos^(-1)2/3

The general solution of the equation sin^(100)x-cos^(100)x=1 is (a) 2npi+pi/3,n in I (b) n pi+pi/2,n in I (c) npi+pi/4,n in I (d) 2npi=pi/3,n in I

The general solution of the equation sin^(100)x-cos^(100)x=1 is 2npi+pi/3,n in I (b) n pi+pi/2,n in I npi+pi/4,n in I (d) 2npi=pi/3,n in I

The solution(s) of the equation sin7x+cos2x=-2 is/are (a) x=(2kpi)/7+(3pi)/(14),\ k in I (b) x=npi+pi/4\ k in I x=2npi+pi/2,\ k in I (d) none of these