Home
Class 12
MATHS
If n is a positive integer, prove that 1...

If `n` is a positive integer, prove that `1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)=(-1)^(n+1)(2n)!//2(n !)^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

If 'n' is a positive integer,then n.1+(n-1).2+(n-2).3+...+1.n=

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

For n in N, prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

Prove that ""^(2n+1)P_(n-1)=((2n+1)!)/((n+2)!) and ""^(2n-1)P_n=((2n-1)!)/((n-1)!)

If 'n' is a positive integer, then n.1+ (n-1) . 2+ (n-2). 3+….. + 1.n=