Home
Class 12
MATHS
Let f(t)=sqrt(1-sint), then int0^(2pi)f(...

Let f(t)=`sqrt(1-sint)`, then `int_0^(2pi)f(t).dt-int_0^(pi)f(t).dt`, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If =f''(t)cos t+f'(t)sin t,y=-f''(t)sin t+f'(t)cos t, then int[((dx)/(dt))^(2)+((dy)/(dt))^(2)]^((1)/(2))dt is equal to

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)