Home
Class 11
MATHS
Without expanding evaluate the determina...

Without expanding evaluate the determinant `|[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

|(sin alpha, cos alpha, sin (alpha+delta)),(sin beta, cos beta, sin(beta+delta)),(sin gamma, cos gamma, sin (gamma+delta))|=

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Without expanding, show that the value of the following determinant is zero: |[sinalpha,cosalpha,cos(a+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]|

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0