Home
Class 12
MATHS
If x=a(t+1/t) and y=a(t-1/t) , prove tha...

If `x=a(t+1/t)` and `y=a(t-1/t)` , prove that `(dy)/(dx)=x/y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If x= a(t-(1/t)), y=a(t+(1/t)) , then show that dy/dx = x/y

If x = a(t+1/t), y =a(t-1/t), then dy/dx =

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =