Home
Class 12
MATHS
In a triangle ABC if a^4+b^4+c^4=2c^2(a^...

In a triangle ABC if `a^4+b^4+c^4=2c^2(a^2+b^2)`, then angle C is equal to (A) `60^0` (B) `120^0` (C) `45^0` (D) `135^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle, A B Cif2a^2b^2+2b^2c^2=a^2+b^4+c^4, then angle B is equal to 45^0 (b) 135^0 120^0 (d) 60^0

In triangle, A B Cif2a^2b^2+2b^2c^2=a^4+b^4+c^4, then angle B is equal to 45^0 (b) 135^0 120^0 (d) 60^0

In triangle, A B Cif2a^2b^2+2b^2c^2=a^4+b^4+c^4, then angle B is equal to 45^0 (b) 135^0 120^0 (d) 60^0

In triangle, A B Cif2a^2b^2+2b^2c^2=a^4+b^4+c^4, then angle B is equal to 45^0 (b) 135^0 120^0 (d) 60^0

In a triangle ABC , a^4+b^4+c^4=2c^2(a^2+b^2) prove that C=45^@ or 135^@

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to 45^0 (b) 60^0 (c) 90^0 (d) 120^0

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to (a) 45^0 (b) 60^0 (c) 90^0 (d) 120^0

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to