Home
Class 11
MATHS
In any triangle A B C , prove that: ("si...

In any triangle `A B C ,` prove that: `("sin"(B-C))/("sin"(B+C))=(b^2-c^2)/(a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that : (sin(B-C))/(sin(B+C))= (b^2 -c^2)/a^2 .

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

For any DeltaABC , prove that (sin(B-C))/(sin(B+C))=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+sin C)+(b^2sin(C-A))/(sinC+sin A)+(c^2sin(A-B))/(sinA+sin B)=0

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)