Home
Class 11
MATHS
Prove that[(i+sqrt(3))/(-i+sqrt(3))]^(10...

Prove that`[(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

log((1+i sqrt(3))/(1-i sqrt(3)))

Prove that ((i-sqrt3)/(i+sqrt3))^200+((i+sqrt3)/(-i+sqrt3))^200= -1

If i=sqrt(-1) then ((i+sqrt(3))/(-i+sqrt(3)))^(52722)+((i-sqrt(3))/(i+sqrt(3)))^(43006)=

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

Show that ((i + sqrt(3))/(-i + sqrt(3)))^(2omega) + ((i - sqrt(3))/(i + sqrt(3)))^(2omega) = -1

(1+i sqrt(3))^(5)+(1-i sqrt(3))^(5)=

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is