Home
Class 12
MATHS
[" Let "k" and "K" be the minimum and th...

[" Let "k" and "K" be the minimum and the maximum values of the function "f(x)=((1+x)^(2))/(1+x^(2))],[" "A) "(1,2^(2)a^(2))" ,the ordered pair "(k,K" ) is equal to "],[[" (A) "(1,2)^(2)," (B) "(B)(2^(2),2^(@))],[f(x)=(D+(1)/(2)+(x^(2))/(2))^(@_(0)),=(1+x)^(3/5)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k and K be the minimum and the maximum values of the function f(x)=((1+x)^(0.6))/(1+x^(0.6)), and x in[0,1] respectively,then the ordered pair (k,K) is equal to

If the function f defined as f(x)=(1)/(x)-(k-1)/(e^(2x)-1),x!=0, is continuous at x=0, then the ordered pair (k,f(0)) is equal to:

For what value of k is the function f(x)={(x^2-1)/(x-1), ,x!=1,k,x=1" continuous at"x=1?

If minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is (pi^(2))/(k), then value of k is

If f(x)=(4x(x^(2)+1))/(x^(2)+(x^(2)+1)^(2)),x>=0 then the maximum value of f(x)=k. The value of (5)/(2)k is :

If the range of function f(x) = (x + 1)/(k+x^(2)) contains the interval [-0,1] , then values of k can be equal to

If the range of function f(x) = (x + 1)/(k+x^(2)) contains the interval [-0,1] , then values of k can be equal to

If the range of function f(x) = (x + 1)/(k+x^(2)) contains the interval [-0,1] , then values of k can be equal to