Home
Class 12
MATHS
" Minimum value of "(sec^(4)alpha)/(tan^...

" Minimum value of "(sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha)(alpha,beta!=(k pi)/(2),k in Z)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha), where alpha!=(pi)/(2),beta!=(pi)/(2),0

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))