Home
Class 12
MATHS
Let N=(4^5+4^4+4^4+4^4)/(3^5+3^5+3^5)dot...

Let `N=(4^5+4^4+4^4+4^4)/(3^5+3^5+3^5)dot(6^5+6^5+6^5+6^5+6^5+6^5)/(2^5+2^5)` then the value of `(log)_2N=` 10 (b) 11 (c) 12 (d) 14

Promotional Banner

Similar Questions

Explore conceptually related problems

Let N=(4^5+4^5+4^5+4^5)/(3^5+3^5+3^5)dot(6^5+6^5+6^5+6^5+6^5+6^5)/(2^5+2^5) then the value of (log)_2N= 10 b. 11 c. 12 d. 14

Let N=(4^5+4^5+4^5+4^5)/(3^5+3^5+3^5)dot(6^5+6^5+6^5+6^5+6^5+6^5)/(2^5+2^5) then the value of (log)_2N= 10 b. 11 c. 12 d. 14

Let N=(4^(5)+4^(4)+4^(4)+4^(4))/(3^(5)+3^(5)+3^(5))*(6^(5)+6^(5)+6^(5)+6^(5)+6^(5)+6^(5))/(2^(5)+2^(5)) then the value of log_(2)N=10( b) 11^(5)(c)12 (d) 14

Let N=(4^(5)+4^(5)+4^(5)+4^(5))/(3^(5)+3^(5)+4^(5))*(6^(5)+6^(5)+6^(5)+6^(5)+6^(5)+6^(5))/(2^(5)+2^(5)) then the value of log_(2)N=10 b.11^(2) c.12 d.14

If 5sqrt(5)xx5^(3)-:5^(-3/2)=5^(a+2), then the value of a is a.4 b.5 c.6 d.8

Simplify (6^4)^2 xx(6^5)^3/(6^2)^2 xx(6^4)^5

If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)] , then the determinant value of BA is

If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)] , then the determinant value of BA is

If a=log_(4)5 and b=log_(5)6 then log_(2)3 is

IF A=[{:(1,2),(3,5):}] then the value of the determinant [A^(2009)-5A^(2008)] is a)-6 b)-5 c)-4 d)4