Home
Class 11
MATHS
" If "f(x)=(1)/(1-x)" then prove that "f...

" If "f(x)=(1)/(1-x)" then prove that "f[f{f(x)}]=x

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1-x)/(1+x), prove that f[f{f(1/x)}]=-f(x)

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=x-(1)/(x) then prove that f(x)=-f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=(1-x)/(1+x) , then prove that f(x)+f(1/x)=0 .

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot