Home
Class 11
MATHS
[A(at^(2),2at),B((a)/(t^(2)),-(2a)/(t))"...

[A(at^(2),2at),B((a)/(t^(2)),-(2a)/(t))" and "C(a,0)" be any three point "],[(1)/(4C)+(1)/(BC)" is independent of "t]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A(at^2, 2at), B((a)/(t^2) , - (2a)/(t)) and C(a, 0) be any three points, show that 1/(AC) + 1/(BC) is independent of t .

If A(at^2, 2at), B((a)/(t^2) , - (2a)/(t)) and C(a, 0) be any three points, show that 1/(AC) + 1/(BC) is independent of t .

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

if P(t^(2),-2t) and Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If the points : A(at_(1)^(2),2at_(1)),B(at_(2)^(2),2at_(2)) and C(a,0) are collinear,then t_(1)t_(2) are equal to

The three distinct point A(t_(1)^(2),2t_(1)),B(t_(2)^(2),2t_(2)) and C(0,1) are collinear,if

The points (a t_1^2, 2 a t_1),(a t_2^2, 2a t_2) and (a ,0) will be collinear, if